dplyrarrange ordnar raderna i datamtcars <- tibble::rownames_to_column(mtcars, var = "model") head(arrange(mtcars, mpg))
## model mpg cyl disp hp drat wt qsec vs am gear carb ## 1 Cadillac Fleetwood 10.4 8 472 205 2.93 5.250 17.98 0 0 3 4 ## 2 Lincoln Continental 10.4 8 460 215 3.00 5.424 17.82 0 0 3 4 ## 3 Camaro Z28 13.3 8 350 245 3.73 3.840 15.41 0 0 3 4 ## 4 Duster 360 14.3 8 360 245 3.21 3.570 15.84 0 0 3 4 ## 5 Chrysler Imperial 14.7 8 440 230 3.23 5.345 17.42 0 0 3 4 ## 6 Maserati Bora 15.0 8 301 335 3.54 3.570 14.60 0 1 5 8
arrange ordnar raderna i datahead(arrange(mtcars, mpg, disp))
## model mpg cyl disp hp drat wt qsec vs am gear carb ## 1 Lincoln Continental 10.4 8 460 215 3.00 5.424 17.82 0 0 3 4 ## 2 Cadillac Fleetwood 10.4 8 472 205 2.93 5.250 17.98 0 0 3 4 ## 3 Camaro Z28 13.3 8 350 245 3.73 3.840 15.41 0 0 3 4 ## 4 Duster 360 14.3 8 360 245 3.21 3.570 15.84 0 0 3 4 ## 5 Chrysler Imperial 14.7 8 440 230 3.23 5.345 17.42 0 0 3 4 ## 6 Maserati Bora 15.0 8 301 335 3.54 3.570 14.60 0 1 5 8
filter välj ut rader (observationer)head(filter(mtcars, am == 1)) #only those with manual transmission
## model mpg cyl disp hp drat wt qsec vs am gear carb ## 1 Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 ## 2 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 ## 3 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 ## 4 Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 ## 5 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 ## 6 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
filter välj ut rader (observationer)head(filter(mtcars, mpg < 30))
## model mpg cyl disp hp drat wt qsec vs am gear carb ## 1 Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 ## 2 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 ## 3 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 ## 4 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 ## 5 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 ## 6 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
mutate inför ny/transformerar variabelhead(mutate(mtcars, lpm = 235 / mpg))
## model mpg cyl disp hp drat wt qsec vs am gear carb ## 1 Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 ## 2 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 ## 3 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 ## 4 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 ## 5 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 ## 6 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 ## lpm ## 1 11.19048 ## 2 11.19048 ## 3 10.30702 ## 4 10.98131 ## 5 12.56684 ## 6 12.98343
select väljer ut variabler (kolumner)head(select(mtcars, model, mpg))
## model mpg ## 1 Mazda RX4 21.0 ## 2 Mazda RX4 Wag 21.0 ## 3 Datsun 710 22.8 ## 4 Hornet 4 Drive 21.4 ## 5 Hornet Sportabout 18.7 ## 6 Valiant 18.1
%>%%>%Bestäm \(h\circ g \circ f(a) = h(g(f(a)))\)
Tre olika sätt att räkna detta i R:
b <- f(a) c <- g(b) h(c)
h(f(g(a)))
a %>%
f %>%
g %>%
h
%>%mtcars <- mutate(mtcars, lpm = 235 / mpg) mtcars <- filter(mtcars, am == 1) ggplot(mtcars, aes(x = hp, y = lpm)) + geom_point()
ggplot(
filter(
mutate(mtcars, lpm = 235 / mpg)
, am ==1),
aes(x = hp, y = lpm)) + geom_point()
mtcars %>%
mutate(lpm = 235 / mpg) %>%
filter(am == 1) %>%
ggplot(aes(x = hp, y = lpm)) + geom_point()
ggplot2ggplot2En statistisk plot har beståndsdelar (“satsdelar”)
datageom: typ av geometriska objekt (punkter, linjer, …)cord: koordinatsystemmapping: binder data till koordinatsysteets dimensioner/“aesthetics” (läge, färg, form, storlek, …)ggplot2En scatterplot
data: mpg och hp för ett antal bilargeom: punktercoord: Kartesiskamapping: binder hp till position på x-axeln och mpg på y-axelnggplot2ggplot(data = mtcars, mapping = aes(x = hp, y = mpg)) + geom_point()
ggplot2ggplot(mtcars,
aes(x = hp, y = mpg, size = wt, color = cyl)) +
geom_point()
ggplot2ggplot(mtcars,
aes(x = hp, y = mpg, size = wt, color = as.factor(cyl))) +
geom_point()